

Activated BAT and its Relationship to Adiposity and Metabolic Markers

Malini Soundarrajan MD¹, Jie Deng PhD², Mary Kwasny ScD³, Nicholas Rubert PhD², Paige Nelson BA², Dalya Abou-El-Seoud BS¹, Lewis Landsberg MD¹, Lisa M Neff MD MS¹

¹ Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL. ² Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL. ³ Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL.

Background

- More than a third of U.S. adults are obese with a BMI ≥ 30 kg/m²
- Imbalance of energy expenditure and energy intake plays a key role in obesity
- Activated brown adipose tissue (BAT) may increase energy expenditure and protect against the development of obesity
- Individuals with active BAT have a greater rise in energy expenditure after cold exposure and food intake compared to those without active BAT^{1,2}
- Prior studies suggest BAT may improve insulin sensitivity, glucose homeostasis, modulate energy expenditure and decrease weight gain³
- Paracrine or endocrine actions of interleukin 6 (IL-6) and fibroblast growth factor 21 (FGF21) may contribute to favorable metabolic changes seen in the presence of active BAT⁴
- BAT activation is regulated by the sympathetic nervous system, which is activated by cold exposure and thyroid hormone and suppressed by fasting⁵

Objectives

- To explore the relationships between cold-activated BAT visualized on PET/CT, measures of adiposity and metabolic markers including fasting glucose, insulin, thyroid hormone, FGF21, IL-6, adiponectin and leptin levels in young healthy
- We postulated that obese men would have less active BAT than lean men and that men with more active BAT would have a more favorable metabolic profile

Methods

- A post-hoc analysis was conducted using data from a study comparing PET/CT to MRI for imaging BAT (Deng et al, JMRI; 2018,47(4):936-47).
- 25 healthy men were included, ages 18-24 yrs, with BMI ranging 19.4 to 35.9 kg/m2
- Physical exam and fasting labs were performed during a screening visit, prior to cold exposure and imaging
- The Homeostatic Model Assessment 2 to estimate insulin resistance (HOMA2 IR) was calculated from fasting glucose and insulin levels
- Body composition was measured using dual energy X-ray absorptiometry (DXA)
- An individualized cooling protocol was utilized to activate BAT. Subjects were wrapped in a water-infused suit (CritiCool® System, Mennen Medical, Israel) and cooled to achieve non-shivering thermogenesis prior to imaging
- Measures of cold-activated BAT, including mean standardized uptake value (SUV_{mean}), maximum SUV (SUV_{max}),) BAT volume and total BAT activity were determined from PET/CT images
- Pearson and Spearman's rank correlations were used to relate measures of active BAT to adiposity and metabolic parameters

Methods (contd)

- Exclusion criteria:
 - O HbA1c ≥ 7.0% or fasting plasma glucose > 150 mg/dL, use of diabetes medication
 - Presence of any medical condition or use of medication that affects energy metabolism or brown fat activity
 - Contraindications to MRI
 - Weight loss >2% in the last 2 months or current weight ≥ 3% below maximal body weight

Figure 1. Metabolically active BAT from neck to axillary regions identified by FDG uptake on PET/CT images.

Table 1. Participant characteristics

Characteristics	N (%)		
Race			
Asian	6 (24%)		
African American	4 (16%)		
White	15 (60%)		
Ethnicity			
Hispanic/Latino	4 (16%)		
Non Hispanic/Latino	21 (84%)		
	Mean (SD)		
Age (years)	21.1 (1.8)		
Weight (kg)	80.5 (17.4)		
BMI (kg/m²)	25.2 (4.8)		
Waist circumference (cm)	88.4 (15.2)		
Body fat (%)	22.2 (9.4)		
Glucose (mg/dL)	85.6 (6.0)		
Insulin (μU/mL)	9.5 (5.6)		
HbA1c (%)	5.3 (0.2)		
HDL (mg/dL)	49.4 (14.8)		
LDL (mg/dL)	86.9 (23.6)		
Triglycerides (mg/dL)	74.9 (29.3)		
Total cholesterol (mg/dL)	149.6 (28.6)		
	Median (25 th , 75 th percentile)		
FGF21 (pg/mL)	77.7 (43.2, 120.1)		
Leptin (ng/mL)	2.9 (1.2, 7.3)		

Results

Variable	Mean (SD)		
SUV _{mean} (g/mL)	3.56 (1.93)		
SUV _{max} (g/mL)	10.52 (7.31)		
	Median (25 th , 75 th percentile)		
Total BAT activity (KBq)	362.9 (93.7, 1045.2)		
BAT volume (mL)	37.6 (10.6, 86.7)		

Table 2. BAT characteristics from PET/CT images

Metabolic parameter	SUV _{mean} R (p value) ^a	SUV _{max} R (p value) ^a	BAT activity R (p-value) b	BAT volume R (p value) ^b
Glucose	-0.30 (0.14)	-0.38 (0.06)	-0.40 (0.05)	-0.48 (0.048)
FGF21	0.35 (0.09)	0.51 (0.01)	0.31 (0.14)	0.29 (0.17)
IL-6	0.34 (0.09)	0.37 (0.07)	-0.17 (0.42)	-0.11 (0.59)

Table 3. Correlations between metabolic parameters and PET/CT measures of active BAT. ^a Pearson correlation, ^b Spearman's rank correlation

- 21 participants (84%) had active BAT on PET/CT
- There were no differences in SUV_{mean} , SUV_{max} , BAT activity or volume by race or ethnicity
- Fasting glucose at screening was inversely related to the volume of activated BAT and the total BAT activity on subsequent PET/CT imaging
- A positive correlation was observed between FGF21 and SUV_{max}
- No other statistically significant relationships were noted between measures of active BAT and indicators of adiposity or glucose metabolism
- No significant correlations were noted between PET/CT measures of active BAT and ambient temperatures

Conclusions

- Data from this exploratory study suggest active BAT may be associated with lower fasting glucose in healthy young men
- Presence of BAT may also be correlated with FGF21, an insulin sensitizer, suggesting BAT may lower glucose levels via an FGF21 dependent pathway
- Further studies are needed to clarify potential mechanisms by which active BAT may impact glucose metabolism and the relationship between BAT and adiposity

References

- 1. Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y, et al. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. *Obesity*. 2011;19(1):13-6.
- 2. Hibi M, Oishi S, Matsushita M, Yoneshiro T, Yamaguchi T, Usui C, et al. Brown adipose tissue is involved in dietinduced thermogenesis and whole-body fat utilization in healthy humans. *International journal of obesity*. 2016;40(11):1655-61.
- 3. Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S, et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. *Diabetes*. 2014;63(12):4089-99.
- 4. Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. *The Journal of clinical investigation*. 2013;123(1):215-23.
- 5. Hanssen MJ, Wierts R, Hoeks J, Gemmink A, Brans B, Mottaghy FM, et al. Glucose uptake in human brown adipose tissue is impaired upon fasting-induced insulin resistance. *Diabetologia*. 2015;58(3):586-95.